3.4.34 \(\int \frac {x^{5/2}}{(b x^2+c x^4)^2} \, dx\) [334]

3.4.34.1 Optimal result
3.4.34.2 Mathematica [A] (verified)
3.4.34.3 Rubi [A] (verified)
3.4.34.4 Maple [A] (verified)
3.4.34.5 Fricas [C] (verification not implemented)
3.4.34.6 Sympy [F(-1)]
3.4.34.7 Maxima [A] (verification not implemented)
3.4.34.8 Giac [A] (verification not implemented)
3.4.34.9 Mupad [B] (verification not implemented)

3.4.34.1 Optimal result

Integrand size = 19, antiderivative size = 230 \[ \int \frac {x^{5/2}}{\left (b x^2+c x^4\right )^2} \, dx=-\frac {5}{2 b^2 \sqrt {x}}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}+\frac {5 \sqrt [4]{c} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{9/4}}-\frac {5 \sqrt [4]{c} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{9/4}}-\frac {5 \sqrt [4]{c} \log \left (\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} b^{9/4}}+\frac {5 \sqrt [4]{c} \log \left (\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} b^{9/4}} \]

output
5/8*c^(1/4)*arctan(1-c^(1/4)*2^(1/2)*x^(1/2)/b^(1/4))/b^(9/4)*2^(1/2)-5/8* 
c^(1/4)*arctan(1+c^(1/4)*2^(1/2)*x^(1/2)/b^(1/4))/b^(9/4)*2^(1/2)-5/16*c^( 
1/4)*ln(b^(1/2)+x*c^(1/2)-b^(1/4)*c^(1/4)*2^(1/2)*x^(1/2))/b^(9/4)*2^(1/2) 
+5/16*c^(1/4)*ln(b^(1/2)+x*c^(1/2)+b^(1/4)*c^(1/4)*2^(1/2)*x^(1/2))/b^(9/4 
)*2^(1/2)-5/2/b^2/x^(1/2)+1/2/b/(c*x^2+b)/x^(1/2)
 
3.4.34.2 Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.60 \[ \int \frac {x^{5/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {-\frac {4 \sqrt [4]{b} \left (4 b+5 c x^2\right )}{\sqrt {x} \left (b+c x^2\right )}+5 \sqrt {2} \sqrt [4]{c} \arctan \left (\frac {\sqrt {b}-\sqrt {c} x}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}\right )+5 \sqrt {2} \sqrt [4]{c} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{8 b^{9/4}} \]

input
Integrate[x^(5/2)/(b*x^2 + c*x^4)^2,x]
 
output
((-4*b^(1/4)*(4*b + 5*c*x^2))/(Sqrt[x]*(b + c*x^2)) + 5*Sqrt[2]*c^(1/4)*Ar 
cTan[(Sqrt[b] - Sqrt[c]*x)/(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])] + 5*Sqrt[2]* 
c^(1/4)*ArcTanh[(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])/(Sqrt[b] + Sqrt[c]*x)])/ 
(8*b^(9/4))
 
3.4.34.3 Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 258, normalized size of antiderivative = 1.12, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.632, Rules used = {9, 253, 264, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{5/2}}{\left (b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {1}{x^{3/2} \left (b+c x^2\right )^2}dx\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {5 \int \frac {1}{x^{3/2} \left (c x^2+b\right )}dx}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\)

\(\Big \downarrow \) 264

\(\displaystyle \frac {5 \left (-\frac {c \int \frac {\sqrt {x}}{c x^2+b}dx}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {5 \left (-\frac {2 c \int \frac {x}{c x^2+b}d\sqrt {x}}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {5 \left (-\frac {2 c \left (\frac {\int \frac {\sqrt {c} x+\sqrt {b}}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {5 \left (-\frac {2 c \left (\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {5 \left (-\frac {2 c \left (\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {5 \left (-\frac {2 c \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {5 \left (-\frac {2 c \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {5 \left (-\frac {2 c \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {5 \left (-\frac {2 c \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt [4]{b} \sqrt {c}}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {5 \left (-\frac {2 c \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\)

input
Int[x^(5/2)/(b*x^2 + c*x^4)^2,x]
 
output
1/(2*b*Sqrt[x]*(b + c*x^2)) + (5*(-2/(b*Sqrt[x]) - (2*c*((-(ArcTan[1 - (Sq 
rt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]/(Sqrt[2]*b^(1/4)*c^(1/4))) + ArcTan[1 + (S 
qrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]/(Sqrt[2]*b^(1/4)*c^(1/4)))/(2*Sqrt[c]) - 
(-1/2*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x]/(Sqrt[2]* 
b^(1/4)*c^(1/4)) + Log[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c] 
*x]/(2*Sqrt[2]*b^(1/4)*c^(1/4)))/(2*Sqrt[c])))/b))/(4*b)
 

3.4.34.3.1 Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 264
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^( 
m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + 2*p + 3)/(a*c 
^2*(m + 1)))   Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, p 
}, x] && LtQ[m, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.4.34.4 Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.59

method result size
derivativedivides \(-\frac {2}{b^{2} \sqrt {x}}-\frac {2 c \left (\frac {x^{\frac {3}{2}}}{4 c \,x^{2}+4 b}+\frac {5 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{32 c \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{b^{2}}\) \(136\)
default \(-\frac {2}{b^{2} \sqrt {x}}-\frac {2 c \left (\frac {x^{\frac {3}{2}}}{4 c \,x^{2}+4 b}+\frac {5 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{32 c \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{b^{2}}\) \(136\)
risch \(-\frac {2}{b^{2} \sqrt {x}}-\frac {c \left (\frac {x^{\frac {3}{2}}}{2 c \,x^{2}+2 b}+\frac {5 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{16 c \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{b^{2}}\) \(136\)

input
int(x^(5/2)/(c*x^4+b*x^2)^2,x,method=_RETURNVERBOSE)
 
output
-2/b^2/x^(1/2)-2*c/b^2*(1/4*x^(3/2)/(c*x^2+b)+5/32/c/(b/c)^(1/4)*2^(1/2)*( 
ln((x-(b/c)^(1/4)*x^(1/2)*2^(1/2)+(b/c)^(1/2))/(x+(b/c)^(1/4)*x^(1/2)*2^(1 
/2)+(b/c)^(1/2)))+2*arctan(2^(1/2)/(b/c)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2) 
/(b/c)^(1/4)*x^(1/2)-1)))
 
3.4.34.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.25 (sec) , antiderivative size = 218, normalized size of antiderivative = 0.95 \[ \int \frac {x^{5/2}}{\left (b x^2+c x^4\right )^2} \, dx=-\frac {5 \, {\left (b^{2} c x^{3} + b^{3} x\right )} \left (-\frac {c}{b^{9}}\right )^{\frac {1}{4}} \log \left (125 \, b^{7} \left (-\frac {c}{b^{9}}\right )^{\frac {3}{4}} + 125 \, c \sqrt {x}\right ) + 5 \, {\left (-i \, b^{2} c x^{3} - i \, b^{3} x\right )} \left (-\frac {c}{b^{9}}\right )^{\frac {1}{4}} \log \left (125 i \, b^{7} \left (-\frac {c}{b^{9}}\right )^{\frac {3}{4}} + 125 \, c \sqrt {x}\right ) + 5 \, {\left (i \, b^{2} c x^{3} + i \, b^{3} x\right )} \left (-\frac {c}{b^{9}}\right )^{\frac {1}{4}} \log \left (-125 i \, b^{7} \left (-\frac {c}{b^{9}}\right )^{\frac {3}{4}} + 125 \, c \sqrt {x}\right ) - 5 \, {\left (b^{2} c x^{3} + b^{3} x\right )} \left (-\frac {c}{b^{9}}\right )^{\frac {1}{4}} \log \left (-125 \, b^{7} \left (-\frac {c}{b^{9}}\right )^{\frac {3}{4}} + 125 \, c \sqrt {x}\right ) + 4 \, {\left (5 \, c x^{2} + 4 \, b\right )} \sqrt {x}}{8 \, {\left (b^{2} c x^{3} + b^{3} x\right )}} \]

input
integrate(x^(5/2)/(c*x^4+b*x^2)^2,x, algorithm="fricas")
 
output
-1/8*(5*(b^2*c*x^3 + b^3*x)*(-c/b^9)^(1/4)*log(125*b^7*(-c/b^9)^(3/4) + 12 
5*c*sqrt(x)) + 5*(-I*b^2*c*x^3 - I*b^3*x)*(-c/b^9)^(1/4)*log(125*I*b^7*(-c 
/b^9)^(3/4) + 125*c*sqrt(x)) + 5*(I*b^2*c*x^3 + I*b^3*x)*(-c/b^9)^(1/4)*lo 
g(-125*I*b^7*(-c/b^9)^(3/4) + 125*c*sqrt(x)) - 5*(b^2*c*x^3 + b^3*x)*(-c/b 
^9)^(1/4)*log(-125*b^7*(-c/b^9)^(3/4) + 125*c*sqrt(x)) + 4*(5*c*x^2 + 4*b) 
*sqrt(x))/(b^2*c*x^3 + b^3*x)
 
3.4.34.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^{5/2}}{\left (b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

input
integrate(x**(5/2)/(c*x**4+b*x**2)**2,x)
 
output
Timed out
 
3.4.34.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 208, normalized size of antiderivative = 0.90 \[ \int \frac {x^{5/2}}{\left (b x^2+c x^4\right )^2} \, dx=-\frac {5 \, c x^{2} + 4 \, b}{2 \, {\left (b^{2} c x^{\frac {5}{2}} + b^{3} \sqrt {x}\right )}} - \frac {5 \, c {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} + 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {\sqrt {b} \sqrt {c}} \sqrt {c}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} - 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {\sqrt {b} \sqrt {c}} \sqrt {c}} - \frac {\sqrt {2} \log \left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {1}{4}} c^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {1}{4}} c^{\frac {3}{4}}}\right )}}{16 \, b^{2}} \]

input
integrate(x^(5/2)/(c*x^4+b*x^2)^2,x, algorithm="maxima")
 
output
-1/2*(5*c*x^2 + 4*b)/(b^2*c*x^(5/2) + b^3*sqrt(x)) - 5/16*c*(2*sqrt(2)*arc 
tan(1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) + 2*sqrt(c)*sqrt(x))/sqrt(sqrt(b) 
*sqrt(c)))/(sqrt(sqrt(b)*sqrt(c))*sqrt(c)) + 2*sqrt(2)*arctan(-1/2*sqrt(2) 
*(sqrt(2)*b^(1/4)*c^(1/4) - 2*sqrt(c)*sqrt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqr 
t(sqrt(b)*sqrt(c))*sqrt(c)) - sqrt(2)*log(sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) 
+ sqrt(c)*x + sqrt(b))/(b^(1/4)*c^(3/4)) + sqrt(2)*log(-sqrt(2)*b^(1/4)*c^ 
(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/(b^(1/4)*c^(3/4)))/b^2
 
3.4.34.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 210, normalized size of antiderivative = 0.91 \[ \int \frac {x^{5/2}}{\left (b x^2+c x^4\right )^2} \, dx=-\frac {5 \, c x^{2} + 4 \, b}{2 \, {\left (c x^{\frac {5}{2}} + b \sqrt {x}\right )} b^{2}} - \frac {5 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{8 \, b^{3} c^{2}} - \frac {5 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{8 \, b^{3} c^{2}} + \frac {5 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{16 \, b^{3} c^{2}} - \frac {5 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{16 \, b^{3} c^{2}} \]

input
integrate(x^(5/2)/(c*x^4+b*x^2)^2,x, algorithm="giac")
 
output
-1/2*(5*c*x^2 + 4*b)/((c*x^(5/2) + b*sqrt(x))*b^2) - 5/8*sqrt(2)*(b*c^3)^( 
3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) + 2*sqrt(x))/(b/c)^(1/4))/(b^ 
3*c^2) - 5/8*sqrt(2)*(b*c^3)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4 
) - 2*sqrt(x))/(b/c)^(1/4))/(b^3*c^2) + 5/16*sqrt(2)*(b*c^3)^(3/4)*log(sqr 
t(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b^3*c^2) - 5/16*sqrt(2)*(b*c^3) 
^(3/4)*log(-sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b^3*c^2)
 
3.4.34.9 Mupad [B] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.33 \[ \int \frac {x^{5/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {5\,{\left (-c\right )}^{1/4}\,\mathrm {atanh}\left (\frac {{\left (-c\right )}^{1/4}\,\sqrt {x}}{b^{1/4}}\right )}{4\,b^{9/4}}-\frac {5\,{\left (-c\right )}^{1/4}\,\mathrm {atan}\left (\frac {{\left (-c\right )}^{1/4}\,\sqrt {x}}{b^{1/4}}\right )}{4\,b^{9/4}}-\frac {\frac {2}{b}+\frac {5\,c\,x^2}{2\,b^2}}{b\,\sqrt {x}+c\,x^{5/2}} \]

input
int(x^(5/2)/(b*x^2 + c*x^4)^2,x)
 
output
(5*(-c)^(1/4)*atanh(((-c)^(1/4)*x^(1/2))/b^(1/4)))/(4*b^(9/4)) - (5*(-c)^( 
1/4)*atan(((-c)^(1/4)*x^(1/2))/b^(1/4)))/(4*b^(9/4)) - (2/b + (5*c*x^2)/(2 
*b^2))/(b*x^(1/2) + c*x^(5/2))